Resistance to Water Diffusion in the Stratum Corneum Is Depth-Dependent

نویسندگان

  • Mark D. A. van Logtestijn
  • Elisa Domínguez-Hüttinger
  • Georgios N. Stamatas
  • Reiko J. Tanaka
چکیده

The stratum corneum (SC) provides a permeability barrier that limits the inflow and outflow of water. The permeability barrier is continuously and dynamically formed, maintained, and degraded along the depth, from the bottom to the top, of the SC. Naturally, its functioning and structure also change dynamically in a depth-dependent manner. While transepidermal water loss is typically used to assess the function of the SC barrier, it fails to provide any information about the dynamic mechanisms that are responsible for the depth-dependent characteristics of the permeability barrier. This paper aims to quantitatively characterize the depth-dependency of the permeability barrier using in vivo non-invasive measurement data for understanding the underlying mechanisms for barrier formation, maintenance, and degradation. As a framework to combine existing experimental data, we propose a mathematical model of the SC, consisting of multiple compartments, to explicitly address and investigate the depth-dependency of the SC permeability barrier. Using this mathematical model, we derive a measure of the water permeability barrier, i.e. resistance to water diffusion in the SC, from the measurement data on transepidermal water loss and water concentration profiles measured non-invasively by Raman spectroscopy. The derived resistance profiles effectively characterize the depth-dependency of the permeability barrier, with three distinct regions corresponding to formation, maintenance, and degradation of the barrier. Quantitative characterization of the obtained resistance profiles allows us to compare and evaluate the permeability barrier of skin with different morphology and physiology (infants vs adults, different skin sites, before and after application of oils) and elucidates differences in underlying mechanisms of processing barriers. The resistance profiles were further used to predict the spatial-temporal effects of skin treatments by in silico experiments, in terms of spatial-temporal dynamics of percutaneous water penetration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cutaneous Water Loss and Lipids of the Stratum Corneum in Dusky Antbirds, a Lowland Tropical Bird

The stratum corneum, the outer layer of the epidermis, consists of flattened cells embedded in a matrix of lipids, primarily cholesterol, free fatty acids, ceramides, and cerebrosides. The stratum corneum forms a barrier to water vapor diffusion through the skin. In birds, the skin limits excessive water loss at thermoneutral temperatures, but also serves as a vehicle for thermoregulation durin...

متن کامل

Changes in electrophysiological properties of rat skin with age.

The age-related changes in the electrical and physiological properties of the skin were examined in rats at the ages of 5, 10, 21, 90, and 180 d. The resistance of the stratum corneum, the resistance of the viable skin (epidermis and dermis), and the capacitance of the stratum corneum were analyzed from skin impedance data using an equivalent circuit. With development and aging, the resistance ...

متن کامل

Diffusion modelling of percutaneous absorption kinetics: 4. Effects of a slow equilibration process within stratum corneum on absorption and desorption kinetics.

One of the main functions of the skin is to control the ingress and egress of water into and out of the body. The transport kinetics of water in the stratum corneum (SC), the dominant site of resistance in the skin, is normally described assuming a homogeneous membrane model. In the present work, the desorption of water from SC was studied and profiles obtained for amount desorbed versus time p...

متن کامل

Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient.

Two-photon fluorescence lifetime imaging is used to identify microdomains (1-25 microm) of two distinct pH values within the uppermost layer of the epidermis (stratum corneum). The fluorophore used is 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), whose lifetime tau (pH 4.5, tau = 2.75 ns; pH 8.5, tau = 3.90 ns) is pH dependent over the pH range of the stratum corneum (pH 4.5 ...

متن کامل

Facts and myths about electrical measurement of stratum corneum hydration state.

Some of the views presented in the chapter on 'Examination of stratum corneum hydration state by electrical methods' in Skin Bioengineering - Techniques and Applications in Dermatology and Cosmetology (Karger, 1998) are in strong disagreement with the results from basic research that has been conducted on skin impedance measurement over the last decades. This research has e.g. non-ambiguously s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015